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This study deals with the free vibration analysis of composite sandwich cylindrical shell with a flexible
core using a higher order sandwich panel theory. The formulation uses the classical shell theory for
the face sheets and an elasticity theory for the core and includes derivation of the governing equations
along with the appropriate boundary conditions. The model consists of a systematic approach for the
analysis of sandwich shells with a flexible core, having high-order effects caused by the nonlinearity of
the in-plane and the vertical displacements of the core. The behavior is presented in terms of internal
resultants and displacements in the faces, peeling and shear stresses in the face–core interface and stress
and displacement field in the core. The accuracy of the solution is examined by comparing the results
obtained with the analytical and numerical results published in the literatures. The parametric study
is also included to investigate the effect of geometrical properties such as radius of curvature, length
and sector angle of the shell.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Sandwich structures with laminated polymer matrix composite
face sheets and a foam or low strength honeycomb core are being
used increasingly in aerospace, automobile, locomotive and con-
struction industries for their excellent properties. This type of core
is flexible as compared to face sheets. This behavior of the core in
such structures is accounted for in the vertical direction and it sig-
nificantly affects the overall behavior of the structures under vari-
ous loading schemes. This may lead to different behavior patterns
in the outer and the inner face sheets as compared with the panels
whose core is considerably stiff in the out-of-plane direction.

The classical approach to the response of sandwich structures
resorts to decoupling of the local and the global responses, whence
ignoring the interaction between them. At present, the analytical
models of the structures are largely based on one of the following
approaches: classical shell theory [1], elastic foundation model [2],
various equivalent single layer and shear deformation theories [3–
6], and most recently, the high-order sandwich panel theory
(HSAPT) [7,8].
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ce for Research in Advanced
eering, K.N. Toosi University
., Tehran, Iran. Tel.: +98 21

. Khalili).
Qatu in his review article [9] and his recent published book [10],
surveyed the literatures on the dynamic behavior of laminated
shells. The review has been conducted with emphasis given to
the theory being applied (thin, thick, 3D, nonlinear), the analysis
method (exact, Ritz, finite elements), complicating effects (initial
stress, imperfection, added masses and springs, elastic supports,
rotating shells, and others) and the various shell geometries that
are related to vibration studies (cylindrical, conical, spherical,
and others).

Khare et al. [3] used the higher order shear deformation theo-
ries for thermo-mechanical and free vibration analysis of lami-
nated sandwich thick shells. Garg et al. [4] investigated the free
vibration analysis of simply supported composite and sandwich
doubly curved shells. Their formulation included the Sander’s the-
ory and they assumed a parabolic distribution of transverse shear
strains through the shell thickness. Singh [5] studied the free vibra-
tion of open deep sandwich shells made of thin layers and a mod-
erately thick core. He used Rayleigh–Ritz method to obtain the
natural frequencies. Korjakin et al. [6] used a zig–zag model to
investigate the free damped vibrations of sandwich shells. They
performed the vibration analysis with damping consideration of
cylindrical, conical and spherical sandwich shells.

Frostig et al. [7,8] developed a high-order theory for sandwich
panels. The theory does not impose any restriction on the distribu-
tion of the deformation through the thickness and the high-order
effects are the results of the theory and not a prior assumption
for displacement fields. Khalili et al. [11] and Malekzadeh et al.
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Nomenclature

x, /, z longitudinal, circumferential and radial coordinates
i(=c, t, b) indices for core, outer (top) and inner (bottom) face

sheets
ui, vi, wi displacements in longitudinal, circumferential and ra-

dial directions
u0i, v0i mid-plane displacements in longitudinal and circumfer-

ential directions
exxi, e//i, cx/i strains in face sheets
exx0i, e//0i, cx/0i mid-plane strains in face sheets
jxxi, j//i, jx/i mid-plane curvatures in face sheets
bxxi, b//i rotations of the face sheets
r xxi, r//i, sx/i in-plane normal and shear stresses in the face

sheets
exxi, e//i, cx/i in-plane normal and shear strains in the face sheets
rrrc, sxrc, s/rc radial and shear stresses in the core
errc, cxrc, c/rc radial and shear strains in the core
Ec, G/c, Gxc Young’s and shear modulus for the core
Nx, N/, Nx/ stress resultants
Mx, M/, Mx/ moment resultants
Aij extensional stiffness matrix
Bij bending–stretching coupling matrix
Dij flexural stiffness matrix

d variational operator
T kinetic energy
U potential energy
Vi volumes of the face sheets and the core
ri radii of curvature for each face sheet
di thickness of the outer and the inner face sheets
ric radii of curvature at core–face interfaces
hc, hf thickness of the core and the face sheets
h total thickness of sandwich shell
L length of shell
a width of shell
a0 sector angle of shell
Iji moment of inertia
qi mass density
Ki, k0, ci constants
~M mass matrix
~K stiffness matrix
j imaginary unit
x natural frequency
�x dimensionless natural frequency
m,n wave numbers
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[12] modified HSAPT by applying first-order shear deformation
theory for face sheets and used improved HSPAT to study the free
vibration and low velocity response of sandwich panels. Frostig
and Baruch [13] used HSAPT to analyse the free vibrations of
straight sandwich beams with a transversely flexible core. Rah-
mani et al. [14] applying HSAPT studied vibration behavior of sand-
wich structure with a flexible functionally graded syntactic core.
Bozhevolnaya and Frostig [15] presented a high-order model for
free vibration of single curved sandwich beam. Frostig and Thom-
sen [16] studied free vibration of sandwich panels with a flexible
core based on HSAPT. They considered two types of computational
models. The first model used the vertical shear stresses in the core,
in addition to the displacements of outer and inner face sheets as
its unknowns. The second model assumed a polynomial descrip-
tion of the displacement fields in the core that was based on the
displacement fields of the first model.

Although the dynamic behavior of sandwich beams and plates
with flexible core has been the subject of some studies [7,8] and
[11–16], there are few reports on the free vibration of the soft core
sandwich shells.

The response of the sandwich shells with soft cores should be
simulated with the aid of an enhanced theory to account its radial
flexibility. This radial flexibility affects the stress and displacement
fields in the face sheets and leads to nonlinear in-plane and vertical
displacement patterns in the core. Equivalent single layer theories
do not consider the effects of transverse flexibility as well as the
interaction between the face sheets and the flexible core. Most of
these theories are only concerned with the analysis of the lowest
vibration modes. The free vibration modes of the sandwich shells
with flexible core consist of the overall and the localized modes,
which the classical plate and the sandwich panel theories can
not detect them.

In the present article, the formulation that includes the deriva-
tion of the governing equations of composite sandwich cylindrical
shell with flexible core is presented based on high-order sandwich
panel theory [7,8].

In the proposed model no prior assumptions are made on the
displacement fields in the core. The displacements and the stress
fields of the core are determined through the solution of its elastic-
ity field equations along with the kinematic and constitutive rela-
tions. The nonpolynomial displacement distributions through the
shell thickness are obtained as an inherent part of the solution.
This nonlinear displacement distribution in the present analysis al-
lows an accurate implementation of the effects of the flexibility of
the core.

The results obtained by the present analysis are validated by the
results published in the previous literatures. The effect of some
parameters such as thickness ratio, radius of curvature, length
and sector angle of the shell on free vibration of the composite
sandwich cylindrical shell is investigated.

2. Theoretical formulation

2.1. Basic assumptions

The cylindrical sandwich shell studied in this study is com-
posed of two FRP composite laminated face sheets and a flexible
core. The panel is assumed to have a length L and a total thick-
ness h as shown in Fig. 1, where the coordinates are also shown
in the same figure. In the following, indices t and b refers to the
outer (top) and the inner (bottom) face sheets of the shell,
respectively. The assumptions used in the present analysis follow
in general, those encountered in linear elastic small deformation
theories. The face sheets are considered as ordinary thin shells
with flexural and in-plane rigidities. The core behavior follows
the assumption adopted by many researchers for the flexible
core [7,8]. It has shear resistance, but is free of in-plane normal
and shear stresses. This assumption is practically correct for
foam cores, since its elastic modulus and flexural rigidity are
much smaller than those of the face sheets. The core is assumed
to behave in a linear elastic manner with small deformations,
while its height may change and its transverse plane takes a
nonlinear shape after deformation. Note that there are no prior
assumptions on the deformation fields through the thickness of
the core. The outer and the inner face sheets and the core are
assumed to be perfect bonded: i.e. there is no relative displace-
ment between the core and the adjacent face sheets at the
interfaces.



Fig. 1. Geometry and coordinates of the composite sandwich cylindrical shell.
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2.2. Shell kinematics

The displacements u, v and w of the face sheets in the x (longi-
tudinal), / (circumferential) and z (radial) directions are expressed
through the following relations [17]:
uiðx;/; z; tÞ ¼ u0iðx;/; tÞ þ zibxxi

v iðx;/; z; tÞ ¼ v0iðx;/; tÞ þ zib//i ði ¼ t; bÞ
wiðx;/; z; tÞ ¼ wiðx;/; tÞ

ð1Þ
and the kinematic equations for the strains in the face sheets are as
follow:
e//i ¼ e//0i þ zij//i; exxi ¼ exx0i þ zijxxi; cx/i ¼ cx/0i þ zijx/i ð2Þ
where the mid-plane in-plane strains and the curvatures are
exx0i ¼ u0i;x; jxxi ¼ bxxi;x

e//0i ¼ ðv0i;/ þwiÞ=ri; j//i ¼ b//i;/=ri

cx/0i ¼ v0i;x þ ðu0i;/=riÞ; jx/i ¼ b//i;x þ ðbxxi;/=riÞ
ð3Þ
where ri is the radii of curvature for each face sheet and

bxxi ¼ �wi;x; b//i ¼ ðv0i �wi;/Þ=ri ð4Þ

The kinematic relations used for the core, assuming small linear
deformation, take the following form:

errc ¼ wc;r; c/rc ¼ vc;r þ
wc;/ � vc

r
; cxrc ¼ wc;x þ uc;r ð5Þ

The compatibility conditions, which interconnect the face sheets
and the core at the interface layers for both outer and inner skins,
are:

ucðr ¼ ricÞ ¼ u0i þ ð�1Þkðdi=2Þbxxi

vcðr ¼ ricÞ ¼ v0i þ ð�1Þkðdi=2Þb//i

wcðr ¼ ricÞ ¼ wi

ð6Þ

where di (i = t, b) are respectively the thickness of the outer and the
inner face sheets and k = 1 when i = t, and k = 0 when i = b.
2.3. Constitutive equations

The constitutive relations for the core are equal to:

rrrc ¼ Ecerrc; sxrc ¼ Gxccxrc; s/rc ¼ G/cc/rc ð7Þ

The constitutive equations for each face sheet based on classical
laminate theory are defined by the following stress resultant-dis-
placement relations [17]:

Nkl;i ¼ Amn;iekl0;i þ Bmn;ijkl0;i

Mkl;i ¼ Bmn;iekl0;i þ Dmn;iekl0;i ði ¼ t; bÞ
ð8Þ

where Nkl and Mkl are stress and moment resultants, Amn, Bmm and
Dmn (m, n = 1, 2, 6) are rigidities and ekl0 and jkl0 are the mid-plane
strains and the curvatures of the shell.

Kinetic energy of the sandwich shell depends on the velocity
and the acceleration of its components. In general, the displace-
ment distributions through the thickness of the core are very close
to be linear, if the loads are smoothly distributed, and they are non-
linear, if the loads are localized or concentrated. Since the vibration
analysis of the cylindrical sandwich shell includes dynamic loads
that are well distributed along the shell, the assumption of linear-
ity in velocity and acceleration fields in the core are justified [13].

Note that these fields are used only to determine the kinetic en-
ergy. The accurate non-linear distributions that have been deter-
mined later from the solution of the equilibrium equations of the
core are exploited as additional governing equations [see Eqs.
(42), (44) and (45)].

The linear longitudinal, circumferential and radial displace-
ments in the core can be expressed by:

ucðr;/; x; tÞ ¼ ½uctð/; x; tÞ � ucbð/; x; tÞ�
r � rbc

rtc � rbc
þ ucbð/; x; tÞ

vcðr;/; x; tÞ ¼ ½vctð/; x; tÞ � vcbð/; x; tÞ�
r � rbc

rtc � rbc
þ vcbð/; x; tÞ

wcðr;/; x; tÞ ¼ ½wtð/; x; tÞ �wbð/; x; tÞ�
r � rbc

rtc � rbc
þwbð/; x; tÞ

ð9Þ

where rtc and rbc are the radii of curvature at the outer and the inner
core–face interfaces. Incorporation of the compatibility conditions
(6) into Eq. (9), together with the rotations of the face sheets bxxi

and b//i (i = t, b) as defined in Eq. (4), leads to the expression of
the acceleration in the core as follows:

€uc ¼ €u0t
r � rbc

rtc � rbc

� �
þ €u0b 1� r � rbc

rtc � rbc

� �
þ €wt;xktrt

r � rbc

rtc � rbc

� �
þ €wb;xkbrb

r � rbc

rtc � rbc
� 1

� �
€vc ¼ €v0tð1� ktÞ

r � rbc

rtc � rbc

� �
þ €v0bð1þ kbÞ 1� r � rbc

rtc � rbc

� �
þ €wt;/kt

r � rbc

rtc � rbc

� �
� €wb;/kb 1� r � rbc

rtc � rbc

� �
€wc ¼ €wt

r � rbc

rtc � rbc

� �
þ 1� r � rbc

rtc � rbc

� �
€wb

ð10aÞ

where

ki ¼
di

2ri
ði ¼ t; bÞ ð10bÞ
2.4. Equations of motion and boundary conditions

The derivation of the governing equations and the boundary
conditions is based on the Hamilton’s principle of the minimization
of the Lagrangian Lof the deformed system:

dL ¼ d
Z t2

t1

ðT � UÞdt ¼ 0 ð11Þ



1272 O. Rahmani et al. / Composite Structures 92 (2010) 1269–1281
where U is the potential energy of the body (energy of the elastic
deformation) and T is the kinetic energy. The first variation of the
potential energy of the cylindrical shell is

dU ¼
Z

Vt

ðrxxtdexxt þ r//tde//t þ sx/tdcx/tÞdVt

þ
Z

Vb

ðrxxbdexxb þ r//bde//b þ sx/bdcx/bÞdVb

þ
Z

Vc

ðsxrcdcxrc þ s/rcdc/rc þ rrrcderrcÞdVc ð12Þ

where rxx i, r//i, sx/i, exx i, e//i, cx/i (i = t, b) are the in-plane normal
and shear stresses and strains in the face sheets; sxrc, s/rc, rrrc, cxrc,
c/rc, errc, the radial and shear stresses and strains in the core, and Vt,
Vb, Vc the appropriate volumes of the outer and inner face sheets
and the core, respectively.

The first variation of the kinetic energy can be obtained by
assuming the homogeneous initial conditions and integration by
parts with respect to the time coordinate:

dT ¼
Z

Vt

qtð€utdut þ €v tdv t þ €wtdwtÞdVt

þ
Z

Vb

qbð€ubdub þ €vbdvb þ €wbdwbÞdVb

þ
Z

Vc

qcð€ucduc þ €vcdvc þ €wcdwcÞdVc ð13Þ

where ui, vi, wi (i = t, b, c) are longitudinal, circumferential and radial
displacements and of the face sheets and the core.

Minimization of the Lagrangian L of the deformed system
dL = d(T � U) = 0 is performed making use of the kinematic rela-
tions (1), the compatibility requirements (6), equations for the
internal resultants (8) and the acceleration in the core (10). This
provides nine equations of motion of the cylindrical sandwich shell
as follows:

� rtN
t
x;x � Nt

x/;/ þ rtcsxrcðr ¼ rtcÞ þ rtI0t €u0t

þ K1€u0t þ K2€u0b þ K1
dt

2
€wt;x þ K2

db

2
€wb;x ¼ 0 ð14Þ

� rbNb
x;x � Nb

x/;/ � rbcsxrcðr ¼ rbcÞ þ rbI0b€u0b þ K2€u0t þ K3€u0b

þ K2
dt

2
€wt;x þ K3

db

2
€wb;x ¼ 0 ð15Þ

� Nt
/;/ �

Mt
/;/

rt
þ rtcð1� ktÞs/rcðr ¼ rtcÞ þ I0trt þ

I2t

rt

� �
€v0t

þ ð1� ktÞ2K1 €v0t þ ð1� ktÞð1þ kbÞK2 €v0b

þ ktð1� ktÞK1 �
I2t

rt

� �
€wt;/ � kbð1� ktÞK2 €wb;/

� rtN
t
x/;x �Mt

x/;x ¼ 0 ð16Þ

� Nb
/;/ �

Mb
/;/

rt
� rbcð1þ kbÞs/rcðr ¼ rbcÞ þ I0brb þ

I2b

rb

� �
€v0b

þ ð1� ktÞð1þ kbÞK2 €v0t

þ ð1þ kbÞ2K3 €v0b þ ktð1þ kbÞK2 €wt;/

� kbð1þ kbÞK3 þ
I2b

rb

� �
€wb;/ � rbNb

x/;x �Mb
x/;x ¼ 0 ð17Þ
Nt
/ �

Mt
/;//

rt
� rtM

t
xx;x � 2Mt

x/;x/ � rtckts/rc;/ðr ¼ rtcÞ

þ rtcrrrcðr ¼ rtcÞ � rtc
dt

2
sxrc;xðr ¼ rtcÞ

þ ðrtI0t þ K1Þ €wt þ K2 €wb � ktð1� ktÞK1 �
I2t

rt

� �
€v0t;/

� ktð1þ kbÞK2 €v0b;/ � k2
t K1 þ

I2t

rt

� �
€wt;// þ ktkbK2 €wb;//

� K1
dt

2
€u0t;x � K2

dt

2
€u0b;x � K1

dt

2

� �2

€wt;xx � K2
dtdb

2

� �
€wb;xx

þ rtI2t €wt;xx ¼ 0 ð18Þ

Nb
/ �

Mb
/;//

rb
� rbMb

xx;x � 2Mb
x/;x/ � rbckbs/r;/ðr ¼ rbcÞ

� rbcrrrcðr ¼ rbcÞ � rbc
db

2
sxrc;xðr ¼ rbcÞ þ K2 €wt þ ðrbI0b þ K3Þ €wb

� kbð1� ktÞK2 €v0t;/ þ kbð1þ kbÞK3 þ
I2b

rb

� �
€v0b;/ þ ktkbK2 €wt;//

� k2
bK3 þ

I2b

rb

� �
€wb;// � K2

db

2
€u0t;x � K3

db

2
€u0b;x

� K2
dtdb

2

� �
€wt;xx � K3

db

2

� �2

€wb;xx þ rbI2b €wb;xx ¼ 0 ð19Þ

s/rc þ ðrs/rcÞ;r ¼ 0 ð20Þ
ðrsxrcÞ;r ¼ 0 ð21Þ
s/rc;/ þ rsxrc;x þ ðrrrrcÞ;r ¼ 0 ð22Þ

The following coefficients are introduced via the geometric charac-
teristics of the shell (see Fig. 1) and the densities of the core and the
face sheets.

Iji ¼
Z

qiz
j
idz; ki ¼

di

2ri
ði ¼ t; bÞ

K1 ¼
qctcð3rtc þ rbcÞ

12
; K2 ¼

qctcðrtc þ rbcÞ
12

; K3 ¼
qctcðrtc þ 3rbcÞ

12

The boundary conditions at the edge of the shell for each face sheet
and the core can be obtained as follows:

For the outer and the inner face sheets (i = t, b) at / = /0 or /1:

u0i ¼ ~u0i or Ni
x/ ¼ 0 ð23Þ

v0i ¼ ~v0i or Ni
/ þ

1
ri

Mi
/ ¼ 0 ð24Þ

wt ¼ ~wt or
1
rt

Mt
/;/ � 2Mt

x/;x �
I2t

rt
€v0t � rtI2twt;x þ rtktst

/rc

þ ktð1� ktÞK1 €v t þ ktð1þ kbÞK2 €vb

þ k2
t K1 � ktkbK2

� �
wt;/ ¼ 0 ð25Þ

wb ¼ ~wb or
1
rt

Mb
/;/ � 2Mb

x/;x �
I2b

rb
€v0b � rbI2bwb;x

þ rbkbsb
/rc � kbð1� ktÞK2 €v t � kbð1þ kbÞK3 €vb

þ k2
bK3 � ktkbK2

� �
wt;/ ¼ 0 ð26Þ

wi;/ ¼ ~wi;/ or Mi
/ ¼ 0 ð27Þ

wc ¼ ~wc or s/rc ¼ 0 ð28Þ
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For the outer and the inner face sheets, (i = t, b) at y = 0 or L:

u0i ¼ ~u0i or riN
i
x ¼ 0 ð29Þ

v0i ¼ ~v0i or riN
i
x/ þMi

x/ ¼ 0 ð30Þ

wi ¼ ~wi or riM
i
x;x þ ri

di

2
si

xrc ¼ 0 ð31Þ

wi;x ¼ ~wi;x or Mi
x ¼ 0 ð32Þ

wi;/ ¼ ~wi;/ or Mi
x/ ¼ 0 ð33Þ

wc ¼ ~wc or sxrc ¼ 0 ð34Þ
2.5. Core stress and displacements fields

The first six governing Eqs. (14)–(19) are the equations of mo-
tion of the differential elements for outer and inner face sheets.
The last three equations (20)–(22) describe the equilibrium of
the elastic core medium in the cylindrical coordinates. They are
uncoupled from the rest of the system and may be solved
independently.

The core stress and the displacements field must first be deter-
mined in order to describe the equations of motion in terms of dis-
placements and shear stresses. The stress and displacements fields
within the core have been determined through the closed-form
solution of the equilibrium equations [see Eqs. (20)–(22)] and the
compatibility requirement of the displacements at the outer and
the inner face–core interfaces [see Eq. (6)].

The relations for the shear stresses of the core are determined
by solving Eqs. (20) and (21):

s/rcðr;/; xÞ ¼
s/ð/; xÞ

r2 ð35Þ

sxrcðr;/; xÞ ¼
sxð/; xÞ

r
ð36Þ

The normal stress within the core in the radial direction is deter-
mined using Eqs. (22), (35) and (36) and the compatibility require-
ment of the vertical displacements at the outer and the inner face–
core interfaces, i.e. the last expression in Eq. (6), and it is:

rrrc ¼
s/;/

r2

rðrt � rbÞ
rtrbLnðrb=rtÞ

þ 1
� �

� ðrt � rbÞ
rLnðrb=rtÞ

þ 1
� �

sx;x

þ Ec

rLnðrb=rtÞ
ðwb �wtÞ ð37Þ

with the help of kinematic relations, i.e. Eq. (3), the shear and radial
stresses in the core, can be defined in the following constitutive
relations:

rrrc ¼ Ecwc;r ð38Þ

sxrc ¼ Gxcðwc;x þ uc;rÞ ð39Þ

s/rc ¼ G/c vc;r þ
wc;/ � vc

r

� �
ð40Þ

Substituting the obtained radial stress in Eq. (37), into the first con-
stitutive relation for the core, i.e. Eq. (38), and performing integra-
tion with respect to r, it is possible to obtain the radial
displacement in the core as follows:

wc ¼ �
s/;/

Ecr
� sx;x

Ec
r þ c1

Ec
Lnr þ c2 ð41Þ

The radial displacement in the core has to satisfy the compatibility
conditions in Eq. (6), at the outer and the inner interfaces, in the ra-
dial direction:
wc ¼ wb þ
s/;/

Ec

1
rbc
� 1

r
þ k0Lnðr=rbcÞ

Lnðrbc=rtcÞ

� �
� sx;x

Ec
r � rbc þ

ðrbc � rtcÞLnðr=rbcÞ
Lnðrbc=rtcÞ

� �
þ ðwb �wtÞ

Lnðr=rbcÞ
Lnðrbc=rtcÞ

ð42Þ

where

k0 ¼
rtc � rbc

rtcrbc

To obtain circumferential displacements in the core, one has to
solve the third constitutive relation in Eq. (40), which is an ordinary
differential equation for the core and by taking into account the Eq.
(35):

rvc;r � vc ¼
s/

rGc/
�wc;/ ð43Þ

Furthermore, it is necessary to fulfill the compatibility conditions in
Eq. (6), and use the relations for the face rotations, i.e. Eqs. (1) and
(2) simultaneously:

vc ¼
r

rbc
ð1þ kbÞvob þ 1� r

rbc
ð1þ kbÞ

� �
wb;/ þ

1
2

r2 � r2
bc

r2
bcr

� �
s/

Gc/

þ s/;//

Ec
�ðr� rbcÞ2

2rr2
bc

þ k0ð1� r=rbc þ Lnðr=rbcÞÞ
Lnðrbc=rtcÞ

" #

� ðwt;/ �wb;/Þ
ð1� r=rbc þ Lnðr=rbcÞÞ

Lnðrbc=rtcÞ

þ sx;x/

Ec

ðrbc � rtcÞð1þ Lnðr=rbcÞ� ðr=rbcÞÞ
Lnðrbc=rtcÞ

þ rbc � rþ rLnðr=rbcÞ
� �

ð44Þ

Also to obtain longitudinal displacements in the core, u, it is neces-
sary to integrate the second constitutive relation for the core, i.e. Eq.
(39) with respect to r, and by taking into account the Eq. (36) and
fulfill the compatibility conditions in Eq. (6):

uc ¼ u0b þ rbc � r � db

2

� �
wb;x þ

sx

Gcx
Ln

r
rbc

� �
� s/;x/

Ec

r
rbc
� 1þ Ln

rbc

r

� �
þ k0ðrbc þ rðLnðr=rbcÞ � 1ÞÞ

Lnðrbc=rtcÞ

� �
þ sx;xx

Ec

r2 þ r2
bc

2
� rrbc �

ðrbc � rtcÞðrbc þ rðLnðr=rbcÞ � 1ÞÞ
Lnðrbc=rtcÞ

� �
� ðwb;x �wt;xÞ

rbc þ rðLnðr=rbcÞ � 1Þ
Lnðrbc=rtcÞ

ð45Þ

It can be noted that, the displacement distributions in the longitu-
dinal, circumferential and the radial directions in Eqs. (42), (44)
and (45) are in general non-linear.

The use of compatibility conditions in Eq. (6), at the inner inter-
face together with the expressions for uc and vc, gives the required
seventh and eighth equations along with the other six Eqs. (14)–
(19):

rt

rb
ð1þ kbÞvobþðkt �1Þv0t þ 1� rt

rb
ð1þ kbÞ

� �
wb;/� ktwt;/þ

1
2

r2
t � r2

b

r2
brt

� �
s/

Gc/

þs/;//

Ec
�ðrt � rbÞ2

2rtr2
b

þk0ð1� rt=rbþ Lnðrt=rbÞÞ
Lnðrb=rtÞ

" #

�ðwt;/�wb;/Þ
ð1� rt=rbþ Lnðrt=rbÞÞ

Lnðrb=rtÞ

þsx;x/

Ec

ðrb� rtÞð1þ Lnðrt=rbÞ� ðrt=rbÞÞ
Lnðrb=rtÞ

þ rb� rt þ rtLnðrt=rbÞ
� �

¼ 0 ð46Þ
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u0b � u0t �
dt

2
wt;x þ rb � rt �

db

2

� �
wb;x

� ðwb;x �wt;xÞ
rb þ rtðLnðrt=rbÞ � 1Þ

Lnðrb=rtÞ
þ sx

Gcx
Ln

rt

rb

� �
� s/;x/

Ec

rt

rb
� 1þ Ln

rb

rt

� �
þ k0ðrb þ rtðLnðrt=rbÞ � 1ÞÞ

Lnðrb=rtÞ

� �
þ sx;xx

Ec

r2
t þ r2

b

2
� rtrb �

ðrb � rtÞðrb þ rtðLnðrt=rbÞ � 1ÞÞ
Lnðrb=rtÞ

� �
¼ 0

ð47Þ

The governing equations of motion are formulated in terms of the
following eight unknowns: the circumferential and longitudinal dis-
placements of the mid-plane of the outer and the inner face sheets,
the vertical deflections of the outer and the inner face sheets and the
two vertical shear stresses in the core. The first six equations are
determined through substitution of the constitutive relations in
Eq. (8), in the equations of motion of the face sheets, i.e. Eqs. (14)–
(19) with the help of Eqs. (38)–(40). Also, the additional two neces-
sary equations have been derived using the circumferential and lon-
gitudinal displacement distributions in Eqs. (46) and (47). Finally,
the governing equations of the composite sandwich cylindrical shell
may be expressed in the compact matrix form as follows:eM €X þ eKX ¼ 0 ð48Þ

where eM is the mass matrix, eK the stiffness matrix and X the vector
of unknown variables defines as follows:

XT ¼ fu0tu0bv0tv0bwtwbs/sxg ð49Þ
Table 1
Materials properties used for the analysis.

Material properties Face sheets

(0/90/0/core/0/90/0) Ref. [18] E1 = 24.51 GPa, E2 = E3

G12 = G13 = 3.34 GPa, G
m12 = m13 = 0.078, m23 =

(0/90/core/0/90) Ref. [4]* E1 = 131 GPa, E2 = E3 =
G12 = G13 = 6.895 GPa,
m12 = m13 = 0.22, m23 = 0

Table 2
Dimensionless natural frequencies for the sandwich panel (0/90/0/core/0/90/0).

Modes (m, n) Present ANSYS Discrepancy (%) Analytical-HSDT (

(1, 1) 14.27 14.74 3.19 15.28
(1, 2) 26.31 26.83 1.94 28.69
(2, 1) 27.04 27.53 1.78 30.01
(2, 2) 34.95 35.60 1.82 38.86

Table 3
Dimensionless natural frequencies for sandwich panel (0/90/core/0/90).

h/a Modes Present model

0.1 1,1 1.7586
1,2 2.9593
1,3 4.8312
2,2 4.1045
2,3 5.7681
3,3 7.4187

0.01 1,1 12.0265
1,2 22.9918
1,3 35.5133
2,2 29.9178
2,3 40.9068
3,3 49.3416
3. Free vibration of composite sandwich cylindrical shell

To investigate the free vibrations of the sandwich shell, the
boundary conditions are considered to be simply-supported on
the edges of the outer and the inner face sheets. The face sheets
consist of a specially orthotropic fibre laminate composite, with
unsymmetric lay-up, where A16 = A26 = D16 = D26 = B16 = B26 = 0.
The solution in such case is analytical and their displacements
are in the following form [17]:

X ¼

u0tð/; xÞ
u0bð/; xÞ
v0tð/; xÞ
v0bð/; xÞ
wtð/; xÞ
wbð/; xÞ
s/ð/; xÞ
sxð/; xÞ

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=>>>>>>>>>>>>>;
ejxt ¼

Cut sinðnp/=a0Þ cosðmpx=LÞ
Cub sinðnp/=a0Þ cosðmpx=LÞ
Cvt cosðnp/=a0Þ sinðmpx=LÞ
Cvb cosðnp/=a0Þ sinðmpx=LÞ
Cwt sinðnp/=a0Þ sinðmpx=LÞ
Cwb sinðnp/=a0Þ sinðmpx=LÞ
Cs/ cosðnp/=a0Þ sinðmpx=LÞ
Csx sinðnp/=a0Þ cosðmpx=LÞ

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=>>>>>>>>>>>>>;
ejxt

ð50Þ

Cut, Cub, Cvt, Cvb, Cwt, Cwb, Cs/, Csx are the amplitudes of the vibra-
tion; j the complex notation; x the natural frequency of vibration
measured in [rad/s]; m and n the orders of the natural vibration
mode.

The solution is determined through substitution of Eq. (50) into
the governing Eq. (48), which yields a set of homogeneous alge-
braic equations, instead of the set of partial differential equations.
Thus, the solution of the partial differential equations is replaced
Core

= 7.77 GPa E1 = E2 = E3 = 0.10363 GPa,
23 = 1.34 GPa, G12 = G13 = G23 = 0.05 GPa,
0.49, q = 1800 kg/m3 m = 0.33, q = 130 kg/m3

10.34 GPa E1 = E2 = E3 = 0.00689 GPa
G13 = 6.205 GPa G12 = G13 = G23 = 3.45 GPa
.49, q = 1627 kg/m3 m = 0, q = 94.195 kg/m3

ESL) [18] Discrepancy (%) FEM–HSDT (ESL) [19] Discrepancy (%)

6.61 15.34 6.97
8.29 30.18 12.82
9.90 31.96 15.39

10.01 40.94 14.63

ANSYS LW [23] ESL [22]

1.6556 1.8480 4.8594
2.8247 3.2196 8.0187
4.6981 5.2234 11.7381
3.9641 4.2894 10.2966
5.6254 6.0942 13.4706
7.2783 7.6762 16.1320

10.8913 11.9401 15.5093
22.7686 23.4017 39.0293
35.6493 36.1434 72.7572
28.2381 30.9432 54.7618
39.3818 41.4475 83.4412
45.4457 49.7622 105.3781



Fig. 2. Mode shapes of laminated sandwich panel (0/90/core/0/90).

Table 4
Dimensionless natural frequencies for antisymmetric sandwich cylindrical shells (0/90/core/0/90).

R/a h/a Present model ANSYS ESL–HSDT [4] ESL–FSDT [4]

1 0.01 63.26908 64.62096 64.63986 64.80146
0.1 5.65219 6.45819 7.71269 14.16395

2 0.01 33.86598 34.50038 35.90110 36.21419
0.1 2.96392 3.70794 5.82454 14.02597

3 0.01 24.16771 24.80504 26.69465 27.11983
0.1 2.19491 2.83296b 5.36505 14.00424
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by an eigenvalue problem, with a mass and a stiffness matrix,
where the square of the eigenfrequency equals to the eigenvalue
and the constants are the corresponding eigenvectors:

ð�x2M þ KÞC ¼ 0 ð51Þ

where

CT ¼ fCut Cub Cvt Cvb Cwt Cwb Cs/ Csxg ð52Þ
4. Results and discussion

4.1. Validation
In order to validate the present analytical method, the results
obtained from the present solution are compared with the results
reported in the literatures by other authors [18,4].

The first example deals with a simply supported sandwich pa-
nel having FRP face sheets and PVC foam core. The face sheets
are made of glass polyester resins and the core is made of HEREX
C70.130 PVC foam and their materials properties are presented
in the first row of Table 1 [18]. The sandwich panel was made by
(0/90/0/core/0/90/0) lay-ups.

In order to apply the developed model to a sandwich panel, the
radii of the curvature in the present governing equations are set to
be large in comparison with all other geometrical parameters of
the shell. The first four dimensionless natural frequencies
�x ¼ xa2ðq=EÞ1=2

c =h [18] for a square sandwich panel with h/
a = 0.10 and hc/h = 0.88 are obtained by the present theory and
compared with those obtained by reference [18] in Table 2. The
analytical method used by Ref. [18] is obtained by higher order
shear deformation theory [HSDT] considered equivalent single
layer assumption.

As observed from Table 2, the eigenfrequency of the present
model is lower than those values obtained by Ref. [18] and the
maximum discrepancy is 10.01% which occurred at 4th wave-
number. The results show that the discrepancy between two
theories increases at higher modes. In the same table, the results
obtained by finite element method used Reddy’s higher-order
theory [19] are shown and compared with the present model re-
sults. Maximum discrepancy in this comparison is 14.63%, which
is due to consideration of additional degrees of freedom for
flexibility of the core in thickness direction, in the present
model.

For further validation, the free vibration analysis of sandwich
panel with a flexible core is carried out using parametric design
language (APDL) of ANSYS commercial software. The element type
used to model the composite face sheets of the sandwich panel is
the eight-node layered structural shell 99. The flexible PVC core
is modeled using the higher order solid 95 element. This element
is defined by 20 nodes and can tolerate irregular shapes with com-
patible displacement shapes [20].

In the modeling of sandwich structures, the motion of face
sheets modeled as laminates with nodes at their mid-planes is as-
sumed to be different from that of the top surface of the core. In
Table 5
Natural frequencies of laminated sandwich cylindrical shells (0/90/0/core/0/90/0) h/
a = 0.10, hc/h = 0.88, L = 1 m (m = n = 1).

Frequencies (Hz) R = 1 m, a = 1 m R = 2 m, a = 1 m Mode shape

x1 234.77 211.92 Anti-symmetric
x2 1186.8 1162.5 Anti-symmetric
x3 1491.5 1488.1 Anti-symmetric
x4 1958.1 1986.6 Symmetric
x5 2202.6 2180.1 Symmetric
x6 2321.2 2282.1 Symmetric
other words, the nodes of the shell elements which modeled the
top and bottom face sheets have different degrees of freedom from
that of the nodes defining the top and bottom surfaces of the core.
This is because by simple coupling of the face sheet nodes with
those of the core, a correct finite element model is not obtained.
This problem is removed through the use of a set of user-defined
constraint equations, which provides a more general means of
relating the degrees of freedom values when compared to possible
consideration of simple coupling. These constraint equations satis-
fied the continuity between the bottom of the top face sheet and
the top surface of the core and similarly between the top of the
bottom face sheet and the bottom surface of the core, i.e. Eq. (6),
[21].

As can be seen from Table 2, the results of present theory are in
good agreement with the results of present ANSYS model. Both of
these models which applied the flexibility of the core, lead to lower
eigenfrequencies compared to those of Refs. [18,19], in which the
whole of sandwich panel is considered as a single layer.

In the second example, a five-layer (0/90/core/0/90), thin as
well as thick sandwich panel has been analyzed. The physical
properties used for this example are given in the 2nd row of Table
1. The ratio of thickness of core to face sheet (hc/hf) is considered
to be 10. Results obtained from the present theories for thin panel
(h/a = 0.01) and moderately thick panel (h/a = 0.1) are shown in
Table 3 together with the results obtained by ESL theory, Ref.
[22] and layerwise (LW) theory, Ref. [23]. Furthermore, the natu-
Fig. 3. Mode shapes of laminated sandwich cylindrical shell (m = n = 1) for various
/ (antisymmetric).



Fig. 4. Mode shapes of laminated sandwich cylindrical shell (m = n = 1) for various
/ (symmetric).

Fig. 5a. Distribution of the core longitudinal
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ral frequencies acquired from ANSYS model as mentioned above,
in addition to corresponding mode shapes are presented in Table
3 and Fig. 2 respectively. Natural frequencies are normalized by
using relation �x ¼ xa2ðq=E2Þ1=2

f =h. It can be observed from Table
3 that the results obtained by ESL theory obviously overestimate
the natural frequencies in comparison with the proposed model
and also LW theory. This can be attributed to the large differences
in the stiffness between the face sheets and the core material. As
a result, the ESL models overestimate the stiffness of the plate,
while obtaining the equivalent material properties. However,
the discrepancies are less for thin panels as compared to the thick
panels. The advantage of the proposed theory can be observed
obviously from the results of thick sandwich panel (h/a = 0.1).
Thus, the present model can be used for thin as well as thick
sandwich panels. Moreover, the results obtained by the proposed
model are in close agreement with FEM results obtained by pres-
ent ANSYS model as well as the results obtained by LW models
[23].

In the next example, the variation of dimensionless fundamen-
tal frequency �x ¼ xa2ðq=E2Þ1=2

f =h with respect to face sheets [4]
for five layer cylindrical sandwich shells having square planform
is investigated. The face sheets are antisymmetric cross-ply and
the values of dimensionless frequencies are obtained for different
values of radius to width ratios in conjunction with thickness to
width ratios. The values obtained by present model are compared
with the results obtained analytically by Ref. [4] which used HSDT
and first order shear deformation theory (FSDT) by considering
equivalent single layer. The results are shown in Table 4. Further-
more, the FEM results obtained by present ANSYS model are in-
cluded in this table. The core to face thickness ratio (hc/hf) is
taken to be 10. The physical properties which are same as previous
example, are used for antisymmetric (0/90/core/0/90) sandwich
cylindrical shells [4].

Results indicate that the use of present higher order sandwich
shell theory leads to lower eigenfrequencies compared to those
of ordinary theories in Ref. [4]; for thin shells (h/a = 0.01), the re-
sults of various theories are in good agreement, but increasing
thickness-to-side ratio (h/a = 0.1) leads to discrepancy and this is
displacements uc through its thickness.



Fig. 5b. Distribution of the core circumferential displacements vc through its thickness.

Fig. 5c. Distribution of the core radial displacements wc through its thickness.

Table 6
Natural frequencies of laminated sandwich cylindrical shell (0/90/0/core/0/90/0) with
respect to the radius of the shell h/a = 0.10, hc/h = 0.88, a = 1 m, L = 1 m (m = n = 1).

Frequencies R = 1 m R = 2 m R = 3 m R = 5 m R = 10 m

x1 234.77 211.92 207.19 204.69 203.62
x2 1186.8 1162.5 1157.9 1155.6 1154.6
x3 1491.5 1488.1 1487.4 1487.1 1486.9
x4 1958.1 1986.6 1993.7 1997.7 1999.5
x5 2202.6 2180.1 2173.0 2046.9 2036.2
x6 2321.2 2282.1 2275.8 2272.8 2271.5
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as the result of considering flexibility of the core by applying the
additional degrees of freedom in the present model. Ordinary the-
ories over-predict the natural frequency by a significant magnitude
and the discrepancy drastically increases as the thickness of sand-
wich shell increases.

In other words, Ref. [4] in which the whole sandwich panel is
assumed as a single layer, fails to consider the transverse flexibility
of the core and therefore obtains higher values for the natural fre-
quencies, whereas the present model yields more accurate results
by considering the transverse compressibility of the core. In fact,
by using ESL model in Ref. [4], the changes in the height of the core



Table 7
Natural frequencies of laminated sandwich cylindrical shell (0/90/0/core/0/90/0) with
respect to the length of the shell h/a = 0.10, hc/h = 0.88, a = 1 m, R = 2 m (m = n = 1).

Frequencies L = 1 m L = 2 m L = 3 m L = 5 m L = 10 m

x1 211.92 141.35 128.18 122.33 120.27
x2 1162.5 827.43 691.13 605.66 565.05
x3 1488.1 1168.6 1136.6 1121.9 1116.0
x4 1986.6 1775.0 1698.8 1656.2 1637.6
x5 2180.1 1989.9 1965.9 1955.1 1950.8
x6 2282.1 2195.5 2193.8 2193.1 2192.8
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(compressibility) during the deformation of the sandwich panel is
neglected, which results in inaccuracy, during analyzing the sand-
wich panels with flexible and thick cores. By increasing the (h/a)
ratio, the effect of core flexibility increases and hence leads a high-
er discrepancies in the results.

Furthermore, the present formulation permits the existence of
the mode shapes consisting of a relative displacement between
the two face sheets. Such modes can not be determined by ordin-
ary theories defined earlier, in which the shell is modeled as an
equivalent single layer with higher order effects. This phenomenon
is discussed in details in the next section.

4.2. Natural modes of cylindrical composite sandwich shell

By solving Eq. (51), each wavenumber produces six eigenvalues
that are the eigenfrequencies of the sandwich shell with flexible
core. These frequencies for composite sandwich cylindrical shell
with the properties given in Ref. [18], for the first wavenumber
m = n = 1 are presented in Table 5.

As mentioned in the previous section, the proposed computa-
tional model is also able to detect higher eigenfrequencies, which
the various shell theories alongwith the high-order effects can
not detect these values. In Table 5, the anti-symmetric modes in-
volve a displacement pattern that is anti-symmetric with respect
to the shell mid-plane, that is, the face sheets move in phase with
each other. In contrast, in the symmetric modes, the displacements
are symmetric with respect to the shell mid-plane, that is, the face
sheets move out of phase with respect to each other. The six eigen-
modes in form of normalized displacement, correspond to the sec-
ond column of Table 5 are presented in Figs. 3 and 4.
Fig. 6. Variation of six eigenfrequencies with
It can be observed from these figures, that the vibration pat-
terns of the sandwich cylindrical shell with flexible core are
more complex than those of a homogeneous shell [17]. This is
a direct consequence of low Young and shear modulus of the
soft core.

In Fig. 3 the anti-symmetric modes, which correspond to the
first three eigenmodes (x1–x3) are illustrated, while in Fig. 4,
the symmetric modes, which correspond to the next three eigen-
modes (x4–x6) are shown. However the natural modes of the
cylindrical shell are different from those of the plate [16], since
the natural modes of the cylindrical shell are of a mixed nature.
For example, dominating the overall anti-symmetric bending of
the entire shell at the first mode, Fig. 3a, is additionally accompa-
nied by an insignificant local in-plane movement of the faces.
Moreover in Fig. 3b and c, small transverse vibration of the core
accompanies the second and third shear modes. The in-plane dis-
placements of the various face sheets in Fig. 4, reveal that the outer
and the inner face sheets are distorted perpendicular to each other.
Also, out of plane mode (pumping mode [16]), which appears in
Fig. 4b, happens together with the minor in-plane shear vibration.
In this mode, the outer and the inner face sheets move opposite to
each other in local bending.

The distributions of the displacements of the core, at / = a0/4
and x = L/4 and through its thickness, for the six eigenmodes, in
longitudinal, circumferential and radial directions, appear in
Fig. 5a–c respectively. The results reveal that the distribution of
the displacements is linear for the first three modes which are
anti-symmetric. The results of the second three modes, which are
symmetric ones, are slightly non-linear for the longitudinal and ra-
dial displacements and have higher order non-linearity for the cir-
cumferential displacements. The linear distributions of
displacements are in agreement with the assumed linear distribu-
tions of the accelerations of the core through its thickness [see Eq.
(10)].

The influence of geometry parameters of sandwich cylindrical
shell on its vibration behavior is also investigated. In Table 6, the
effect of changing radius of the cylindrical shell on its frequencies
and in Table 7, the results of changing length of the shell on the
natural frequencies are shown. Increasing the radius and the
length of the shell, leads to decreasing the natural frequency of
the shell and the length has predominant effect. Also, the variation
of six eigenfrequencies with respect to the sector angle of the shell
respect to the sector angle of the shell.



Fig. 7. Mode shapes of the laminated sandwich cylindrical shell (m = 1, n = 2).

1280 O. Rahmani et al. / Composite Structures 92 (2010) 1269–1281
is presented in Fig. 6. All values of eigenfrequencies are reduced at
much higher rate for small sector angle, but it reaches to a thresh-
old value at a0 around 30�.

The present model is able to predict the relative displacements
between the face sheets at higher mode numbers. For example, the
results of second wavenumber (m = 1, n = 2) at x = L/4 are pre-
sented in Fig. 7.
5. Conclusions

This study considered the free vibration analysis of composite
sandwich cylindrical shell with flexible core by the use of high-
order sandwich panel theory (HSAPT). The HSAPT for beams and
plates for the first time, is extended to cylindrical shells using
the classical shell theory for the face sheets and the 3D elastic-
ity solution for the core, and showed excellent predictions of
behavior in free vibration analysis. The mathematical formula-
tion uses the Hamilton’s principle to derive the equations of mo-
tion alongwith the appropriate boundary conditions. By
considering the flexibility of the sandwich core in the analysis,
the model can achieve to the modes consisting of a relative dis-
placement between the two face sheets which are not detected
by other models. The results revealed that the sandwich shells
with flexible core exhibit a complex behavior, and that the
vibration patterns of the sandwich cylindrical shells are more
complex than those of the homogeneous shells. Furthermore, it
was observed that the natural modes of the sandwich shell
are different from those of the sandwich plate and have a mixed
mode nature.
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